Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Immunol ; 15: 1347676, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38590519

RESUMO

The gut-lung axis is critical during viral respiratory infections such as influenza. Gut dysbiosis during infection translates into a massive drop of microbially produced short-chain fatty acids (SCFAs). Among them, butyrate is important during influenza suggesting that microbiome-based therapeutics targeting butyrate might hold promises. The butyrate-producing bacterium Faecalibacterium duncaniae (formerly referred to as F. prausnitzii) is an emerging probiotic with several health-promoting characteristics. To investigate the potential effects of F. duncaniae on influenza outcomes, mice were gavaged with live F. duncaniae (A2-165 or I-4574 strains) five days before infection. Supplementation of F. duncaniae was associated with less severe disease, a lower pulmonary viral load, and lower levels of lung inflammation. F. duncaniae supplementation impacted on gut dysbiosis induced by infection, as assessed by 16S rRNA sequencing. Interestingly, F. duncaniae administration was associated with a recovery in levels of SCFAs (including butyrate) in infected animals. The live form of F. duncaniae was more potent that the pasteurized form in improving influenza outcomes. Lastly, F. duncaniae partially protected against secondary (systemic) bacterial infection. We conclude that F. duncaniae might serve as a novel next generation probiotic against acute viral respiratory diseases.


Assuntos
Influenza Humana , Probióticos , Camundongos , Animais , Humanos , Disbiose/microbiologia , RNA Ribossômico 16S/genética , Ácidos Graxos Voláteis , Butiratos , Faecalibacterium/genética
2.
Gut Microbes ; 16(1): 2325067, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38445660

RESUMO

The gut-to-lung axis is critical during respiratory infections, including influenza A virus (IAV) infection. In the present study, we used high-resolution shotgun metagenomics and targeted metabolomic analysis to characterize influenza-associated changes in the composition and metabolism of the mouse gut microbiota. We observed several taxonomic-level changes on day (D)7 post-infection, including a marked reduction in the abundance of members of the Lactobacillaceae and Bifidobacteriaceae families, and an increase in the abundance of Akkermansia muciniphila. On D14, perturbation persisted in some species. Functional scale analysis of metagenomic data revealed transient changes in several metabolic pathways, particularly those leading to the production of short-chain fatty acids (SCFAs), polyamines, and tryptophan metabolites. Quantitative targeted metabolomics analysis of the serum revealed changes in specific classes of gut microbiota metabolites, including SCFAs, trimethylamine, polyamines, and indole-containing tryptophan metabolites. A marked decrease in indole-3-propionic acid (IPA) blood level was observed on D7. Changes in microbiota-associated metabolites correlated with changes in taxon abundance and disease marker levels. In particular, IPA was positively correlated with some Lactobacillaceae and Bifidobacteriaceae species (Limosilactobacillus reuteri, Lactobacillus animalis) and negatively correlated with Bacteroidales bacterium M7, viral load, and inflammation markers. IPA supplementation in diseased animals reduced viral load and lowered local (lung) and systemic inflammation. Treatment of mice with antibiotics targeting IPA-producing bacteria before infection enhanced viral load and lung inflammation, an effect inhibited by IPA supplementation. The results of this integrated metagenomic-metabolomic analysis highlighted IPA as an important contributor to influenza outcomes and a potential biomarker of disease severity.


Assuntos
Actinobacteria , Microbioma Gastrointestinal , Influenza Humana , Humanos , Animais , Camundongos , Propionatos , Triptofano , Inflamação , Poliaminas
3.
Aging Cell ; 22(12): e14007, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37997569

RESUMO

The age-related decline in immunity reduces the effectiveness of vaccines in older adults. Immunosenescence is associated with chronic, low-grade inflammation, and the accumulation of senescent cells. The latter express Bcl-2 family members (providing resistance to cell death) and exhibit a pro-inflammatory, senescence-associated secretory phenotype (SASP). Preexisting senescent cells cause many aging-related disorders and therapeutic means of eliminating these cells have recently gained attention. The potential consequences of senescent cell removal on vaccine efficacy in older individuals are still ignored. We used the Bcl-2 family inhibitor ABT-263 to investigate the effects of pre-vaccination senolysis on immune responses in old mice. Two different ovalbumin (OVA)-containing vaccines (containing a saponin-based or a CpG oligodeoxynucleotide adjuvant) were tested. ABT-263 depleted senescent cells (apoptosis) and ablated the basal and lipopolysaccharide-induced production of SASP-related factors in old mice. Depletion of senescent cells prior to vaccination (prime/boost) had little effect on OVA-specific antibody and T-cell responses (slightly reduced and augmented, respectively). We then used a preclinical melanoma model to test the antitumor potential of senolysis before vaccination (prime with the vaccine and OVA boost by tumor cells). Surprisingly, ABT-263 treatment abrogated the vaccine's ability to protect against B16 melanoma growth in old animals, an effect associated with reduced antigen-specific T-cell responses. Some, but not all, of the effects were age-specific, which suggests that preexisting senescent cells were partly involved. Hence, depletion of senescent cells modifies immune responses to vaccines in some settings and caution should be taken when incorporating senolytics into vaccine-based cancer therapies.


Assuntos
Vacinas Anticâncer , Vacinação , Animais , Camundongos , Vacinas Anticâncer/farmacologia , Senescência Celular , Imunidade , Proteínas Proto-Oncogênicas c-bcl-2
4.
Nat Aging ; 3(7): 829-845, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37414987

RESUMO

Older age is one of the strongest risk factors for severe COVID-19. In this study, we determined whether age-associated cellular senescence contributes to the severity of experimental COVID-19. Aged golden hamsters accumulate senescent cells in the lungs, and the senolytic drug ABT-263, a BCL-2 inhibitor, depletes these cells at baseline and during SARS-CoV-2 infection. Relative to young hamsters, aged hamsters had a greater viral load during the acute phase of infection and displayed higher levels of sequelae during the post-acute phase. Early treatment with ABT-263 lowered pulmonary viral load in aged (but not young) animals, an effect associated with lower expression of ACE2, the receptor for SARS-CoV-2. ABT-263 treatment also led to lower pulmonary and systemic levels of senescence-associated secretory phenotype factors and to amelioration of early and late lung disease. These data demonstrate the causative role of age-associated pre-existing senescent cells on COVID-19 severity and have clear clinical relevance.


Assuntos
COVID-19 , SARS-CoV-2 , Cricetinae , Animais , Carga Viral , Pulmão , Mesocricetus , Inflamação , Senescência Celular
5.
PLoS Pathog ; 19(3): e1011192, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36888688

RESUMO

Progression of tuberculosis is tightly linked to a disordered immune balance, resulting in inability of the host to restrict intracellular bacterial replication and its subsequent dissemination. The immune response is mainly characterized by an orchestrated recruitment of inflammatory cells secreting cytokines. This response results from the activation of innate immunity receptors that trigger downstream intracellular signaling pathways involving adaptor proteins such as the TIR-containing adaptor protein (Tirap). In humans, resistance to tuberculosis is associated with a loss-of-function in Tirap. Here, we explore how genetic deficiency in Tirap impacts resistance to Mycobacterium tuberculosis (Mtb) infection in a mouse model and ex vivo. Interestingly, compared to wild type littermates, Tirap heterozygous mice were more resistant to Mtb infection. Upon investigation at the cellular level, we observed that mycobacteria were not able to replicate in Tirap-deficient macrophages compared to wild type counterparts. We next showed that Mtb infection induced Tirap expression which prevented phagosomal acidification and rupture. We further demonstrate that the Tirap-mediated anti-tuberculosis effect occurs through a Cish-dependent signaling pathway. Our findings provide new molecular evidence about how Mtb manipulates innate immune signaling to enable intracellular replication and survival of the pathogen, thus paving the way for host-directed approaches to treat tuberculosis.


Assuntos
Mycobacterium tuberculosis , Tuberculose , Humanos , Camundongos , Animais , Receptores de Interleucina-1/genética , Receptores de Interleucina-1/metabolismo , Transdução de Sinais , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Concentração de Íons de Hidrogênio , Glicoproteínas de Membrana/metabolismo
6.
Viruses ; 14(9)2022 09 17.
Artigo em Inglês | MEDLINE | ID: mdl-36146875

RESUMO

Obese patients with non-alcoholic steatohepatitis (NASH) are prone to severe forms of COVID-19. There is an urgent need for new treatments that lower the severity of COVID-19 in this vulnerable population. To better replicate the human context, we set up a diet-induced model of obesity associated with dyslipidemia and NASH in the golden hamster (known to be a relevant preclinical model of COVID-19). A 20-week, free-choice diet induces obesity, dyslipidemia, and NASH (liver inflammation and fibrosis) in golden hamsters. Obese NASH hamsters have higher blood and pulmonary levels of inflammatory cytokines. In the early stages of a SARS-CoV-2 infection, the lung viral load and inflammation levels were similar in lean hamsters and obese NASH hamsters. However, obese NASH hamsters showed worse recovery (i.e., less resolution of lung inflammation 10 days post-infection (dpi) and lower body weight recovery on dpi 25). Obese NASH hamsters also exhibited higher levels of pulmonary fibrosis on dpi 25. Unlike lean animals, obese NASH hamsters infected with SARS-CoV-2 presented long-lasting dyslipidemia and systemic inflammation. Relative to lean controls, obese NASH hamsters had lower serum levels of angiotensin-converting enzyme 2 activity and higher serum levels of angiotensin II-a component known to favor inflammation and fibrosis. Even though the SARS-CoV-2 infection resulted in early weight loss and incomplete body weight recovery, obese NASH hamsters showed sustained liver steatosis, inflammation, hepatocyte ballooning, and marked liver fibrosis on dpi 25. We conclude that diet-induced obesity and NASH impair disease recovery in SARS-CoV-2-infected hamsters. This model might be of value for characterizing the pathophysiologic mechanisms of COVID-19 and evaluating the efficacy of treatments for the severe forms of COVID-19 observed in obese patients with NASH.


Assuntos
COVID-19 , Dislipidemias , Hepatopatia Gordurosa não Alcoólica , Angiotensina II , Enzima de Conversão de Angiotensina 2 , Animais , COVID-19/complicações , Cricetinae , Citocinas , Dieta , Modelos Animais de Doenças , Humanos , Inflamação , Mesocricetus , Hepatopatia Gordurosa não Alcoólica/etiologia , Obesidade/complicações , SARS-CoV-2
7.
Gut Microbes ; 14(1): 2100200, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35830432

RESUMO

Obese patientss with nonalcoholic steatohepatitis (NASH) are particularly prone to developing severe forms of coronavirus disease 19 (COVID-19). The gut-to-lung axis is critical during viral infections of the respiratory tract, and a change in the gut microbiota's composition might have a critical role in disease severity. Here, we investigated the consequences of infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) on the gut microbiota in the context of obesity and NASH. To this end, we set up a nutritional model of obesity with dyslipidemia and NASH in the golden hamster, a relevant preclinical model of COVID-19. Relative to lean non-NASH controls, obese NASH hamsters develop severe inflammation of the lungs and liver. 16S rRNA gene profiling showed that depending on the diet, SARS-CoV-2 infection induced various changes in the gut microbiota's composition. Changes were more prominent and transient at day 4 post-infection in lean animals, alterations still persisted at day 10 in obese NASH animals. A targeted, quantitative metabolomic analysis revealed changes in the gut microbiota's metabolic output, some of which were diet-specific and regulated over time. Our results showed that specifically diet-associated taxa are correlated with disease parameters. Correlations between infection variables and diet-associated taxa highlighted a number of potentially protective or harmful bacteria in SARS-CoV-2-infected hamsters. In particular, some taxa in obese NASH hamsters (e.g. Blautia and Peptococcus) were associated with pro-inflammatory parameters in both the lungs and the liver. These taxon profiles and their association with specific disease markers suggest that microbial patterns might influence COVID-19 outcomes.


Assuntos
COVID-19 , Microbioma Gastrointestinal , Hepatopatia Gordurosa não Alcoólica , Animais , Cricetinae , Hepatopatia Gordurosa não Alcoólica/microbiologia , Obesidade/complicações , Obesidade/microbiologia , RNA Ribossômico 16S/genética , SARS-CoV-2
8.
PLoS Pathog ; 18(5): e1010498, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35587469

RESUMO

Drug repurposing has the advantage of shortening regulatory preclinical development steps. Here, we screened a library of drug compounds, already registered in one or several geographical areas, to identify those exhibiting antiviral activity against SARS-CoV-2 with relevant potency. Of the 1,942 compounds tested, 21 exhibited a substantial antiviral activity in Vero-81 cells. Among them, clofoctol, an antibacterial drug used for the treatment of bacterial respiratory tract infections, was further investigated due to its favorable safety profile and pharmacokinetic properties. Notably, the peak concentration of clofoctol that can be achieved in human lungs is more than 20 times higher than its IC50 measured against SARS-CoV-2 in human pulmonary cells. This compound inhibits SARS-CoV-2 at a post-entry step. Lastly, therapeutic treatment of human ACE2 receptor transgenic mice decreased viral load, reduced inflammatory gene expression and lowered pulmonary pathology. Altogether, these data strongly support clofoctol as a therapeutic candidate for the treatment of COVID-19 patients.


Assuntos
Tratamento Farmacológico da COVID-19 , SARS-CoV-2 , Animais , Antivirais/farmacologia , Clorobenzenos , Chlorocebus aethiops , Cresóis , Humanos , Pulmão , Camundongos , Células Vero
9.
Nutrients ; 14(7)2022 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-35406091

RESUMO

The expanding knowledge on the systemic influence of the human microbiome suggests that fecal samples are underexploited sources of new beneficial strains for extra-intestinal health. We have recently shown that acetate, a main circulating microbiota-derived molecule, reduces the deleterious effects of pulmonary Streptococcus pneumoniae and enteric Salmonella enterica serovar Typhimurium bacterial post-influenza superinfections. Considering the beneficial and broad effects of acetate, we intended to isolate a commensal strain, producing acetate and potentially exploitable in the context of respiratory infections. We designed successive steps to select intestinal commensals that are extremely oxygen-sensitive, cultivable after a freezing process, without a proinflammatory effect on IL-8 induction, and producing acetate. We have identified the Blautia faecis DSM33383 strain, which decreased the TNFα-induced production of IL-8 by the intestinal epithelial cell line HT-29. The beneficial effect of this bacterial strain was further studied in two preclinical models of post-influenza Streptococcus pneumoniae (S.p) and Salmonella enterica serovar Typhimurium (S.t) superinfection. The intragastrical administration of Blautia faecis DSM33383 led to protection in influenza-infected mice suffering from an S.p. and, to a lesser extent, from an S.t secondary infection. Altogether, this study showed that Blautia faecis DSM33383 could be a promising candidate for preventive management of respiratory infectious diseases.


Assuntos
Clostridiales , Infecções por Orthomyxoviridae , Infecções Pneumocócicas , Salmonelose Animal , Animais , Clostridiales/classificação , Clostridiales/isolamento & purificação , Modelos Animais de Doenças , Humanos , Influenza Humana/complicações , Interleucina-8 , Camundongos , Infecções por Orthomyxoviridae/complicações , Infecções Pneumocócicas/microbiologia , Infecções Pneumocócicas/prevenção & controle , Salmonelose Animal/microbiologia , Salmonelose Animal/prevenção & controle , Salmonella typhimurium , Streptococcus pneumoniae
10.
Front Immunol ; 13: 773261, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35126390

RESUMO

Short-chain fatty acids (SCFAs) are metabolites produced mainly by the gut microbiota with a known role in immune regulation. Acetate, the major SCFA, is described to disseminate to distal organs such as lungs where it can arm sentinel cells, including alveolar macrophages, to fight against bacterial intruders. In the current study, we explored mechanisms through which acetate boosts macrophages to enhance their bactericidal activity. RNA sequencing analyses show that acetate triggers a transcriptomic program in macrophages evoking changes in metabolic process and immune effector outputs, including nitric oxide (NO) production. In addition, acetate enhances the killing activity of macrophages towards Streptococcus pneumoniae in an NO-dependent manner. Mechanistically, acetate improves IL-1ß production by bacteria-conditioned macrophages and the latter acts in an autocrine manner to promote NO production. Strikingly, acetate-triggered IL-1ß production was neither dependent of its cell surface receptor free-fatty acid receptor 2, nor of the enzymes responsible for its metabolism, namely acetyl-CoA synthetases 1 and 2. We found that IL-1ß production by acetate relies on NLRP3 inflammasome and activation of HIF-1α, the latter being triggered by enhanced glycolysis. In conclusion, we unravel a new mechanism through which acetate reinforces the bactericidal activity of alveolar macrophages.


Assuntos
Citotoxicidade Imunológica , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Inflamassomos/metabolismo , Macrófagos Alveolares/fisiologia , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Infecções Pneumocócicas/etiologia , Infecções Pneumocócicas/metabolismo , Streptococcus pneumoniae/imunologia , Acetatos/farmacologia , Animais , Biomarcadores , Citotoxicidade Imunológica/efeitos dos fármacos , Modelos Animais de Doenças , Suscetibilidade a Doenças , Técnicas de Silenciamento de Genes , Glicólise , Interações Hospedeiro-Patógeno/imunologia , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Interleucina-1beta/metabolismo , Camundongos , Camundongos Knockout , Óxido Nítrico/metabolismo , Consumo de Oxigênio , RNA Interferente Pequeno/genética
11.
Gut Microbes ; 14(1): 2018900, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34965194

RESUMO

Mounting evidence suggests that the gut-to-lung axis is critical during respiratory viral infections. We herein hypothesized that disruption of gut homeostasis during severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection may associate with early disease outcomes. To address this question, we took advantage of the Syrian hamster model. Our data confirmed that this model recapitulates some hallmark features of the human disease in the lungs. We further showed that SARS-CoV-2 infection associated with mild intestinal inflammation, relative alteration in intestinal barrier property and liver inflammation and altered lipid metabolism. These changes occurred concomitantly with an alteration of the gut microbiota composition over the course of infection, notably characterized by a higher relative abundance of deleterious bacterial taxa such as Enterobacteriaceae and Desulfovibrionaceae. Conversely, several members of the Ruminococcaceae and Lachnospiraceae families, including bacteria known to produce the fermentative products short-chain fatty acids (SCFAs), had a reduced relative proportion compared to non-infected controls. Accordingly, infection led to a transient decrease in systemic SCFA amounts. SCFA supplementation during infection had no effect on clinical and inflammatory parameters. Lastly, a strong correlation between some gut microbiota taxa and clinical and inflammation indices of SARS-CoV-2 infection severity was evidenced. Collectively, alteration of the gut microbiota correlates with disease severity in hamsters making this experimental model valuable for the design of interventional, gut microbiota-targeted, approaches for the control of COVID-19.Abbreviations: SARS-CoV-2, severe acute respiratory syndrome coronavirus 2; COVID-19, coronavirus disease 2019; SCFAs, short-chain fatty acids; dpi, day post-infection; RT-PCR, reverse transcription polymerase chain reaction; IL, interleukin. ACE2, angiotensin converting enzyme 2; TMPRSS2, transmembrane serine protease 2.


Assuntos
COVID-19/microbiologia , COVID-19/fisiopatologia , Modelos Animais de Doenças , Microbioma Gastrointestinal , Mesocricetus , Animais , Bactérias/classificação , Bactérias/isolamento & purificação , Bactérias/metabolismo , COVID-19/patologia , Cricetinae , Ácidos Graxos Voláteis/administração & dosagem , Ácidos Graxos Voláteis/metabolismo , Humanos , Masculino , SARS-CoV-2/fisiologia , Índice de Gravidade de Doença , Tratamento Farmacológico da COVID-19
12.
Infect Immun ; 89(9): e0073420, 2021 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-33820816

RESUMO

Along with respiratory tract disease per se, viral respiratory infections can also cause extrapulmonary complications with a potentially critical impact on health. In the present study, we used an experimental model of influenza A virus (IAV) infection to investigate the nature and outcome of the associated gut disorders. In IAV-infected mice, the signs of intestinal injury and inflammation, altered gene expression, and compromised intestinal barrier functions peaked on day 7 postinfection. As a likely result of bacterial component translocation, gene expression of inflammatory markers was upregulated in the liver. These changes occurred concomitantly with an alteration of the composition of the gut microbiota and with a decreased production of the fermentative, gut microbiota-derived products short-chain fatty acids (SCFAs). Gut inflammation and barrier dysfunction during influenza were not attributed to reduced food consumption, which caused in part gut dysbiosis. Treatment of IAV-infected mice with SCFAs was associated with an enhancement of intestinal barrier properties, as assessed by a reduction in the translocation of dextran and a decrease in inflammatory gene expression in the liver. Lastly, SCFA supplementation during influenza tended to reduce the translocation of the enteric pathogen Salmonella enterica serovar Typhimurium and to enhance the survival of doubly infected animals. Collectively, influenza virus infection can remotely impair the gut's barrier properties and trigger secondary enteric infections. The latter phenomenon can be partially countered by SCFA supplementation.


Assuntos
Infecções por Enterobacteriaceae/etiologia , Ácidos Graxos Voláteis/biossíntese , Interações Hospedeiro-Patógeno , Vírus da Influenza A/fisiologia , Influenza Humana/complicações , Influenza Humana/virologia , Mucosa Intestinal/metabolismo , Interações Microbianas , Suscetibilidade a Doenças , Disbiose , Infecções por Enterobacteriaceae/metabolismo , Interações Hospedeiro-Patógeno/imunologia , Humanos , Influenza Humana/metabolismo , Mucosa Intestinal/imunologia
13.
Gut Microbes ; 13(1): 1-19, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33685349

RESUMO

The current pandemic of coronavirus disease (COVID) 2019 constitutes a global public health issue. Regarding the emerging importance of the gut-lung axis in viral respiratory infections, analysis of the gut microbiota's composition and functional activity during a severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection might be instrumental in understanding and controling COVID 19. We used a nonhuman primate model (the macaque), that recapitulates mild COVID-19 symptoms, to analyze the effects of a SARS-CoV-2 infection on dynamic changes of the gut microbiota. 16S rRNA gene profiling and analysis of ß diversity indicated significant changes in the composition of the gut microbiota with a peak at 10-13 days post-infection (dpi). Analysis of bacterial abundance correlation networks confirmed disruption of the bacterial community at 10-13 dpi. Some alterations in microbiota persisted after the resolution of the infection until day 26. Some changes in the relative bacterial taxon abundance associated with infectious parameters. Interestingly, the relative abundance of Acinetobacter (Proteobacteria) and some genera of the Ruminococcaceae family (Firmicutes) was positively correlated with the presence of SARS-CoV-2 in the upper respiratory tract. Targeted quantitative metabolomics indicated a drop in short-chain fatty acids (SCFAs) and changes in several bile acids and tryptophan metabolites in infected animals. The relative abundance of several taxa known to be SCFA producers (mostly from the Ruminococcaceae family) was negatively correlated with systemic inflammatory markers while the opposite correlation was seen with several members of the genus Streptococcus. Collectively, SARS-CoV-2 infection in a nonhuman primate is associated with changes in the gut microbiota's composition and functional activity.


Assuntos
COVID-19/microbiologia , Microbioma Gastrointestinal , Macaca/microbiologia , Macaca/virologia , Animais , Bactérias/classificação , Modelos Animais de Doenças , Fezes , Feminino , Metaboloma , RNA Ribossômico 16S/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...